
Accelerating Agent-Based Ecosystem Models
using the Cell Broadband Engine

Michael Lange
〈michael.lange@imperial.ac.uk〉

Department of Computing
Imperial College London

Supervisor: Dr. Tony Field 〈ajf@doc.ic.ac.uk〉
Second Marker: Prof. Paul Kelly 〈p.kelly@doc.ic.ac.uk〉

June 25, 2009

mailto:michael.lange@imperial.ac.uk
mailto:ajf@doc.ic.ac.uk
mailto:p.kelly@doc.ic.ac.uk

Abstract

The objective of this project is to investigate how dedicated Streaming ar-
chitectures, such as the Cell Broadband Engine, can be used to speed up a
class of agent-based models generated from a domain-specific problem-solving
environment called the Virtual Ecology Workbench (VEW). This is a platform
used by biological oceanographers to build models of ocean plankton ecosys-
tem. The report presents a detailed performance analysis of existing agent-based
VEW simulations and explores their mapping to parallel Stream Processing as
offered by the Cell. We demonstrate the use of streamed multi-core arithmetic
processing and show how it can be used to achieve a considerable performance
increases in the agent update loop and substantial overall performance gains
in models with modest numbers of agents. Based on this we develop a pro-
totype code generator for the VEW specifically targeted at the Cell. We then
give a full account of performance limitations imposed by sequential compo-
nents of the VEW algorithm. In particular, we show that the VEW’s existing
Particle Management algorithm (which controls the number of agents in the sim-
ulation) is a major bottleneck to the parallelization of large-scale models. We
end by discussing potential solutions to the Particle Management problem.

Acknowledgements

I would like to thank my supervisor Dr. Tony Field for all the interesting dis-
cussions and his invaluable support throughout this project. I would also like
to give special thanks to Wes Hinsley for walking me through the VEW and
helping me understand the algorithm. In addition I would like to extend my
thanks to Wilhelm Kleiminger and Phil Meyer for providing the Toymodel
code my project was based on. Furthermore I would like to mention Matteo
Sinercia for creating the original LERM plankton model and John Woods who
supervises the Virtual Ecology research group. Special thanks also go to my
girlfriend Stefanie for supporting me throughout my studies.

Contents

1 Introduction 2

2 Background 4
2.1 VEW . 4

2.1.1 Lagrangian Ensemble Modeling 5
2.1.2 Water Column and Physics 5
2.1.3 Agents . 6
2.1.4 Particle Management . 7
2.1.5 Agent Stage Management 7
2.1.6 Chemical Budgeting and Ingestion 8

2.2 The Streaming Model of Parallel Computation 8
2.2.1 Streaming Architecture 9
2.2.2 Data Localization and Parallelism 9
2.2.3 Amdahl’s Law . 10

2.3 Cell Broadband Engine . 10
2.3.1 PPE . 11
2.3.2 SPU . 12
2.3.3 EIB . 13

3 Toymodel Analysis 14
3.1 Execution Structure . 15

3.1.1 SPE . 15
3.1.2 Data Structure . 17

3.2 Performance . 18
3.2.1 Scalability . 18
3.2.2 SPU Timing . 19
3.2.3 SystemSim . 20

3.3 Evaluation . 21

4 Agent Update Optimization 23
4.1 SPU Optimization . 23

4.1.1 Vector Intrinsics . 23
4.1.2 PRNG . 24
4.1.3 Vector Conversion . 25

4.2 Data-Transfer Framework . 27
4.2.1 Triple-Buffering . 27
4.2.2 Task and Feedback Farming 27
4.2.3 Scheduler . 28

4.3 Memory Organization . 28
4.4 Model Compiler . 30

4.4.1 VEW Model Compilation 30
4.5 Performance evaluation . 32

iii

5 Sequential Components 35
5.1 Memory: AOS vs. SOA . 35
5.2 Agent State Change . 36

5.2.1 Linear Search . 37
5.2.2 Indexed Agent Copy . 38

5.3 Particle Management . 39
5.3.1 Split and Merge . 40
5.3.2 L2 Cache . 41

5.4 Component Evaluation . 42

6 Discussions 44
6.1 Model Correctness . 44

6.1.1 Biomass . 44
6.1.2 Agents . 45

6.2 Performance . 46
6.2.1 Speedup and Scalability 47
6.2.2 Limitations . 48

7 Conclusions 50
7.1 Parallel Scalability of VEW models 50
7.2 Update Code Generator . 51
7.3 Future Work . 51

7.3.1 Ingestion . 52
7.3.2 Parallel PM . 52

1

Introduction

IBM recently set a new record in supercomputing power by breaking the Peta-
FLOPS barrier (Floating Point Operations per Second) with the Roadrunner
model. At the heart of this machine IBM used 12,000 Cell Broadband Engine
(Cell BE) multi-core chips as ”accelerators” for arithmetic computation, on top
of 7,000 conventional supercomputing cores. The Cell chips are added to im-
prove the systems capability to crunch vast amounts of unstructured mesh data
for scientific calculations. The parallel multi-core Streaming architecture of the
Cell not only provides high FLOP rates, but also yields an impressive data
throughput that is highly desired for applications handling large data volumes.

The Cell BE is easily accessible for example via the Sony Playstation 3 gam-
ing console. Not only is this a very inexpensive way of getting a Cell proces-
sor, but Sony also has built in the opportunity to run different distributions of
Linux on the Playstation 3. This enables developers to generate and run their
own code for Cell processing on a PS3.

The idea of this project is to explore the application of the Cell to a class
of agent-based simulations as generated by the Virtual Ecology Workbench
(VEW). This is a scientific tool allowing biological oceanographers to build
models of the plankton ecosystems within a simulated water column in the
ocean. The VEW currently generates Java code to simulate the specified ecosys-
tem from a model description.

These models have a number of potentially important scientific applica-
tions. They can give insights into the complex cause-effect relationships within
a modeled ecosystem, allowing researchers gain a deeper understanding of the
dynamics of the marine ecosystem. VEW models have many applications, for
example understanding biodiversity of the ocean, the effect of marine plankton
on the atmosphere and global climate, and the plankton ecosystem’s response
to external influences, like fishing or pollution.

VEW simulations are based on Lagrangian Ensemble modeling [3] which
models potentially very large numbers of individual agents, as compared to
traditional population-based approaches that are based on the solution of rel-
atively small sets of coupled differential equations. The agents act indepen-
dently within the simulation. This requires individual updates of each agent
during each timestep of the simulation, resulting in large amounts of arith-
metic computation. We aim to exploit the inherent data-parallelism of agent-
based LE simulations by utilizing parallel multi-core Stream Processing, as
provided by the Cell BE architecture. Combined with the Cell’s superior arith-
metic capabilities we hope to achieve significant performance improvements.

2

There are two phases to this project. The first phase is an investigation into
the internal architecture of VEW models with the intent of finding an efficient
mapping to the Cell BE that will improve the performance of VEW-generated
simulations. This is a largely manual task and is based on the analysis of a
reference model (”Toymodel”) that is representative of those created by the
VEW. The second phase is an investigation into the performance limitations of
the current VEW algorithm imposed by sequential processing components.

The key incentive of this project is to create an efficient prototype simula-
tion with a generic structure suitable for automated code generation from an
abstract model description. This is a key challenge towards the inclusion of
performance-optimized simulations into the VE Workbench.

The main contribution of this project is a partial model compiler for the
Cell BE platform. This compiler generates efficient vector processing code for
updating LE agents. During the development phase of the compiler several
structural changes have been applied to the prototype simulation in order en-
able automated code-generation. This resulted in additional performance in-
crease of the generated update code. The main contributions made towards
the prototype simulation are detailed in chapter 4 and include:

• Full vectorization of update code

• Flexible allocation and efficient localization of agent blocks

• Agent homogeneity through multi-array memory organization

After applying the listed optimizations the Toymodel’s performance suffers
from limitations due to sequential components of the simulation loop. During
the second phase of the project, we therefore investigate the two most signif-
icant sequential parts of the simulation and analyze their impact on overall
performance. In chapter 5 we show how particular hardware features of the
Cell BE limit performance scalability of the current implementation of the Par-
ticle Management process for very large simulations.

In section 5.2.2 we also show an implementation strategy that limits the ex-
ecution time of one sequential component to a minimum. For this we show
how to parallelize a previously PPE-based linear agent search by using meta-
data generated on the SPEs during the update cycle. We will then conclude by
discussing the applicability of this method to the remaining sequential over-
head.

3

Background

2.1 VEW

The Virtual Ecology Workbench is a software tool designed to automate mod-
eling of virtual plankton ecosystems. The created models are agent based sim-
ulations based on the Lagrangian Ensemble (LE) meta-model[3]. In contrast to
traditional population-based modeling this approach is based on individually
computing the biological and bio-chemical behaviour of individual plankters
and inferring population properties from the simulated sub-populations. As
the bio-diversity of species and the simulated time-frame are potentially un-
limited, the simulations are computationally very expensive and demand con-
siderable programming knowledge.

To aid this, the VEW aims to automate the generation of the simulation
from the meta-language Planktonica [4], which provides oceanographers with
an easy way of specifying the behaviour and biological properties of indi-
vidual plankton species in terms of primitive biological equations, based on
reproducible laboratory experiments. Thus researchers can create complex
individual-based plankton simulations without the need for conventional pro-
gramming [7].

The VEW consists of several components for creating and running LE sim-
ulations and analyzing the generated output data. All these components are
written in Java for cross-platform compatibility. A user-friendly GUI lets users
define a model of plankton species and their functional behaviour, as well as
initial and boundary conditions of the simulation. From this a meta-definition
of the model is created in XML and this is compiled to Java with a code gener-
ating compiler.

The compiler creates a set of Java classes, which when compiled perform
a timestep-based single-threaded simulation of the created model. During ex-
ecution properties of the ecosystem are logged for later analysis. The proper-
ties of individual agents and the overall plankton population are updated in
timesteps usually representing 30 minutes. Simulations can be arbitrarily long,
and may simulate several years.

4

2.1.1 Lagrangian Ensemble Modeling

Lagrangian Ensemble modeling simulates individual agents within a virtual
water column (Mesocosm), which can be static or drift around in the ocean.
Each agent represents a sub-population of a particular plankton species. The
agent models the behaviour of one individual plankter with an associated sub-
population size. From these sub-populations field properties, such as demog-
raphy and biofeedback, can be inferred. Hence, LE models combine individual-
based and field-modeling, in contrast to traditional population-based box-model
approaches [3].

2.1.2 Water Column and Physics

The simulated water column (Virtual Mesocosm) has a fixed depth of 500 me-
ters and is divided into layers of 1m depth and 1km 2 horizontal area. There is
an open boundary at the base of the column, allowing plankton and chemicals
to sink into the deep ocean [3]. The upper meter of the column is furthermore
sub-divided into more fine-grained layers, in order to model accurately the
absorption of solar irradiance (see figure 2.1). This enables simulating light-
dependent biological processes, such as photosynthesis. Combined with the
effect of wind and other environmental fluxes, these processes are responsible
for turbulent water flow in the upper layers of the column. For this reason
chemicals and plankton particles above a certain threshold layer, the so-called
turbocline, get mixed very frequently and rapidly. Below the threshold laminar
flow causes particles to gradually sink.

Ambient
physics

...
...

...

Laminar
flow

Turbocline

Sea surface

Ambient
chemistry

Turbulent mixing

Open boundary

Figure 2.1: One-dimensional Water Column (taken from [9], with permission
of authors).

The simulation time steps of 30 minutes are carefully chosen to, since they
represent the approximate time needed turn over the upper mixing layers. The
depth of these layers may vary seasonally during the course of the simulation,
based on the flow fields generated by the column drifting in the ocean and
the amount of light absorbed in the top layers of the column. Hence plankton
populations in these layers may occlude this process and therefore affect the
depth of the turbocline. This property of LE models is generally known as

5

Biofeedback, where simulated biological processes in the mesocosm affect the
depth of the turbocline.

The vertical movement of the column in the ocean may also influence the
flux fields responsible for changing the depth of the turbocline, and hence
the track of the mesocosm is calculated iteratively with every timestep. Pub-
lished meteorological data is then used to infer the effects and combined with
Biofeedback used to calculate the depth of the mixing layers for the next time
step. This process of determining the individual depths of the turbocline is
computationally very costly overall. In order to speed up the calculations it is
therefore possible to ignore Biofeedback effects, and read the physics data from
previously executed simulations, representing stereotypical runs of a simula-
tion for a given environment.

Within the column, since plankton does not possess the ability to actively
move horizontally, the trajectories of individual plankters are only calculated
in the vertical dimension and relative to the layers of the water column. These
vertical trajectories are affected by turbulence which is modeled by random
displacement of all plankters. This is the only Monte Carlo (random) aspect of
the simulation. Different agents are said to follow different trajectories mean-
ing that they experience independent random displacement over their lifetime.

2.1.3 Agents

In LE modeling each agent represents a sub-population of identical plankton
particles based on the individual properties of one plankter. Each agent is
part of a functional group which defines aspects of basic behaviour for sets
of plankters in response to biological and local environmental properties[7].
The definitions consist of equations describing the fundamental bio-chemical
and physical properties of the organism, derived from reproducible laboratory
experiments. Thus each agent behaves as if it were one particle, but accounts
for a sub-population of varying size.

Functional groups are sub-divided into particular species of plankters and
biological stages, including potentially many living and one dead stage. An
agents internal state consists of its stage, its associated sub-population and
several internal state variables, usually representing internal pools of chemi-
cals absorbed from the water. Together with environmental properties, such
as depth within the water column, this defines an agent’s state. A plankter’s
species and stage then define the individual agent’s behaviour during each
time step.

Since an agent’s internal state is updated independently during each itera-
tion, we can combine all these bio-chemical processes into one set of rules per
species and stage, which in turn is applied to each agent of this type. Thus
we are dealing with several heterogeneous sets of individual agents, each as-
sociated with one independent computational update function. Of particular
interest now is that agents may non-deterministically change their internal bi-
ological state. Stream processing, on the other hand, requires agent homogene-
ity where it can apply one function to a large set of agents. Thus, it is vital to
identify state changes immediately if agent homogeneity is to be preserved.

6

2.1.4 Particle Management

One of the advantages of LE models is the ability to limit the inherent error
of the simulation by ensuring that a sufficient number of agents with individ-
ual trajectories exists for each plankton sub-population and stage in any given
layer of the water column [3]. Agents whose population is less than a specified
threshold are dropped from the simulation. In order to maintain a minimum
number of agents of each type, the most populated agents of a sub-population
are split in half and a new agent is created with independent trajectory. The
independence of agents in general is ensured by basing their trajectory on ran-
dom numbers.

Similarly, in order to limit the computational cost of an over-populated Vir-
tual Ecosystem the Particle Management (PM) process may also merge the two
least populated agents in a layer. The current run rules use a minimum and
maximum threshold of agent sub-populations per layer to keep the agent pop-
ulation within reasonable bounds, without compromising the overall plankton
demography of the ecosystem.

Particle Management is a sequential process at the moment that requires
several search loops over parts of the agent set. For a simple Diatom model it
is also the only function that actually creates and deletes agents and is therefore
highly memory bound.

Normally for full models the PM runs after every iteration of the update
loop. For the Diatom model we used during the investigation it is, however,
possible to limit the process to only being run once a day (every 48 timesteps)
without compromising the models accuracy.

Furthermore, a complete restructuring of the PM algorithm can have a
strong impact on the bio-chemical stability of VEW models. We will there-
fore treat this component as unsuitable for parallel execution for the purpose
of this report.

2.1.5 Agent Stage Management

A second sequential component gets added to the standard VEW loop as part
of the vector-processing optimization required to achieve high data through-
put on the Cell architecture. The arithmetic kernel function that is to be ap-
plied to LE agents is determined by an agents internal state, in particular by
its biological stage. An agent, however, may non-deterministically change its
internal stage during any given iteration.

On the other hand, streaming requires homogeneous sets of agents with
identical kernel function for vector-based SIMD processing. Thus, agents that
have changed their internal stage during the iteration need to be moved to
an according memory area if we want to ensure the highest homogeneous
throughput.

This process exhibits similar properties to the PM routines in that it is mem-
ory bound and sequential. In contrast to the PM, however, it has only one
exhaustive linear lookup which can be exploited to parallelize the search.

7

2.1.6 Chemical Budgeting and Ingestion

LE agents continuously interchange chemicals with the surrounding environ-
ment through uptake() and release() function calls. The requested amounts are
hereby stored as part of the agents state along with the internal pools of nu-
trient chemicals. This allows us in the next timestep to correct the amounts of
nutrients interchanged by parameters calculated from the column field data.

Full VEW simulations also simulate predation between different plankton
species. Although this is not featured in the prototype, the process of calcu-
lating Ingestion rates between agents in particular layers, as it featured in the
Java version, follows similar principles.

The process is interleaved between multiple iterations by adapting mul-
tiple copies of agent variables with request parameters. The parameters get
exchanged with the water column, which is simulated on the PPE after each
iteration of the update loop.

In the model predator agents make requests for food in every layer they
swim through during the iteration. These requests get averaged over the in-
dividual populations of the prey agent types for each layer the predator tra-
versed. A parameter then scales the ingested nutrients down if insufficient
food is available and adds the chemicals to the predator’s pool in the next iter-
ation.

VEW-based models also allow for Chemical Recycling and Budgeting, where
specified amounts of chemicals are added to the virtual mesocosm at specified
time-steps, or based on threshold values. This is done to counter the effect
of chemicals collecting in particular layers and nutrients falling through the
lower boundary of the column.

Ingestion and Chemical Recycling are not in the focus of this report, since
they not part of the prototype simulation. Their computational structure is,
however, similar to basic Nutrient Exchange. We will therefore assume that
extending the model with these features will not have a substantial impact on
the overall scalability and performance of the algorithm.

2.2 The Streaming Model of Parallel Computation

With the emergence of dedicated stream architectures, such as the Cell BE,
the Stream Programming model is rapidly growing in popularity, as some
of its main abstractions are natively implemented in the Cell hardware. The
paradigm was originally developed for media and image processing tasks with
simple, regular data access patterns and predictable control structures which
performed repetitive arithmetic calculations over large volumes of data. More
recently this approach has been mapped to general-purpose processors via
frameworks, such as Streamware [11]. It has also been used to exploit the
advantages of computational parallelism for scientific applications using ir-
regular mesh constructs [13].

8

Stream Programming aims to decouple computation from memory access,
in order to achieve task parallelism. According to [11] there are certain char-
acteristics desirable for a Stream program, which include: large amounts of
data to operate on, high arithmetic intensity, memory accesses that can be de-
termined well in advance of their execution, and producer-consumer locality
between computation functions. All of these features are found in VEW simu-
lations, making them ideal candidates for parallelized Streaming Processing.

2.2.1 Streaming Architecture

Streaming Architecture contain several independent processing cores. In addi-
tion to a general-purpose CPU they consist of multiple data processing cores,
called Processing Elements (PE), each of which maintains its own local memory
area. These dedicated Streaming units are commonly optimized for fast arith-
metic processing and high data throughput. SIMD (Single Instruction Multiple
Data) or Vector Processing is often the key to achieving this high throughput.
In the case of the Cell processor the PEs are not able to run an operating sys-
tem. Thus the Master-Slave architecture of the Cell allows an OS to be run on
the general-purpose CPU, while the PEs handle large volumes of arithmetic
calculations.

Steaming architectures are commonly capable of asynchronous Direct Mem-
ory Access (DMA), where dedicated memory control units allow data transfer
to happen in parallel to arithmetic processing. This allows for a constant data
flow to and from the parallel processing units and requires a bus that provides
efficient bandwidth for large volumes of data.

2.2.2 Data Localization and Parallelism

As the individual Processing Elements of Stream architectures cannot make ar-
bitrary references to main memory, the data first has to be localized into the
address space of the PEs. This process entails address renaming much like in
conventional distributed systems. Within the Streaming paradigm data local-
ization is based on a gather-compute-scatter approach, where data is arranged
in continuous arrays of data structures (Streams) in main memory, which are
bulk copied (gather) into the local memory area of each PE. The processing
functions then work on these Strips of data before storing (scatter) the modi-
fied data array back into main memory.

The key to obtaining high parallelism during this process is to minimize
data-transfer overheads through asynchronous DMA memory access that hap-
pens in parallel to computation. Thus, streamed data needs to be sufficiently
buffered at the local processing unit in order to hide memory latencies. Double-
Buffering is closely associated with Streaming Programming. This technique
describes the use of two equivalent data buffers to mask memory latency, where
processing is performed on one buffer, while data is pre-fetched into the sec-
ond buffer. This process suffers one drawback, in that it does not mask data
flow from the local elements to main memory. In section 4.2 we therefore use
a third buffer in order to hide any data-transfer latencies in both directions.

9

Through asynchronous DMA Stream Programming attempts to turn mem-
ory latency into a bandwidth problem. It is therefore imperative for any Stream-
ing architecture to provide high-bandwidth data transfer between it’s paral-
lel processors and shared memory. Thus, one of the Cell’s main features is
the high-performance bus (detailed in section 2.3.3) which provides high data
throughput.

Stream Processing is targeted at utilizing data parallelism of a parallel al-
gorithm for multi-core computation. Data parallelism is a result of identical
operations being applied concurrently on different data items [2]. The amount
of data parallel computations is very large in VEW-generated plankton models,
due to the strong dominance of Agent Update computation in sequential VEW
implementations. Since updates on a single agent’s state are independent of
other agents and repeated for large numbers of iterations, we can expect large
parallel speedups when implementing a parallel Streaming algorithm.

2.2.3 Amdahl’s Law

Amdahl’s Law describes the effect sequential processing has on the potential
speedups achievable by a parallel algorithm. It is thus one of the fundamental
laws of parallel Computing.

If a problem of size W has a sequential component of size WS, then W/WS

is an upper bound on its maximum speedup, no matter how many processing
elements are used [2].

Thus, when analyzing the performance gains achievable on a parallel ar-
chitecture like the Cell it is imperative to consider the overhead imposed on
the overall performance by sequential processing. This is done in chapter 5 in
this report.

2.3 Cell Broadband Engine

The architecture of the Cell cores is highly optimized for Stream Processing. It
consists of 8 Synergistic Processing Elements (SPE) for SIMD Vector Process-
ing connected to a central PowerPC Element (PPE) by the circular Element
Interconnect Bus (EIB), as shown in Figure 2.2. The general-purpose PPE core
allows for a PowerPC Linux distribution to be run on the Cell. For the purpose
of this project we run Ubuntu 8.10 (PPC) Operating System on a Sony Playsta-
tion 3. The Playstation has 512MB integrated XDR memory, 256MB of which
are available to a Linux kernel, as well as six of the eight SPE cores. There is no
direct access for the OS to the on-board graphics card and the other two SPEs,
one of which runs the Sony Hypervisor access restriction code.

As a Streaming architecture the Cell features a sophisticated data transfer
system, in which the circular high-speed bus connects to all components on the
chip. SPEs additionally have an associated 256KB Local Store for buffering the
stream data. This local memory area has no cache hierarchy and holds code,
as well data. The SPEs are equipped with a separate Memory Flow Controller
(MFC) that coordinates asynchronous data exchange with main memory. Thus
data transfer happens in parallel to arithmetic computation on the SPE.

10

Figure 2.2: Conceptual Cell architecture, showing how the circular IEB con-
nects all processing elements with main memory via four data rings.

The Cell is based on a Master-Slave architecture, where the PPE coordi-
nates the overall application and delegates computationally intense processes
to SPEs. Since the SPEs are highly optimized for vector-based floating-point-
arithmetic they are slow when handling control structures. Therefore the PPE
has to ensure that the data is layed out in an efficient format before passing it
to the vector-processing units.

2.3.1 PPE

The Power Processing Element (PPE) acts as a system control processor that
handles OS interrupts and manages data streams for external computation on
the SPEs. It is the only processing core on the Cell chip that is capable of run-
ning an operating system. In our simulation it will delegate the arithmetically
intense task of updating agents to the dedicated SPE arithmetic cores, whilst
maintaining environment data for the virtual water column. Thus it is also
responsible for all agent management tasks of the VEW algorithm.

The PPE is a dual-core general-purpose processor based on IBM’s PowerPC
architecture. As such it uses a typical CPU cache hierarchy including a 32KB
L1 DCache and a 512KB L2 cache. Both caches use 128-bit cache lines and are
connected to memory via the circular bus (EIB). The size of the cache lines is
equivalent to the minimum amount of data transferable on the Cell’s bus. One
important property of the PPE’s L2 cache is that it is write-back. This means
that when the PPE makes a write request to an already cached location it will
only update the L2 cache, but not write to memory. The cache will then write
the data to main memory when the cache entry gets removed [1]. Through this
the PPE attempts to reduce bus traffic by delaying all memory writes until they
are necessary.

11

2.3.2 SPU

The Synergistic Processing Unit (SPU) is the functional core of the SPEs. It is
programmed via intrinsic functions provided by libraries of the Cell SDK (Soft-
ware Development Kit). These include memory flow controls for the MFC,
message-passing primitives for mailboxes and vector instructions for arith-
metic calculations and branching.

Arithmetic intrinsics come in two types: Atomic intrinsics, which get trans-
lated to single assembly instructions, and compound ones for more complex
vector calculations. Compound intrinsics require specific coding to instruct the
compiler to automatically in-line the according assembly instructions for per-
formance optimization. All general arithmetic functions can be expressed us-
ing SIMD intrinsics, allowing for fully vectorized computation on four agents
during the Agent Update phase of computation.

The purpose in optimizing the linearity of the generated SPU assembly is to
utilize the dual-issue instruction pipelines of the SPU. The SPU pre-fetches in-
structions to in advance before issuing them on one of the two issue pipelines.
The two instruction pipelines handle Load/Store and arithmetic instructions
separately. One pipeline copies the relevant data fields into the 128-bit regis-
ters in the SPU’s Register File and vice versa, while the second pipeline exe-
cutes arithmetic operations between loaded registers. Thus it allows for two
different instructions to be processed in one parallel processor tick.

The compiler will try to interleave the two types of instructions on sequen-
tial code parts in order to get a maximum dual-issue rate. Thus it is very im-
portant to write vectorized code in a sequential fashion to aid the compiler’s
attempts at optimization. Since the SPEs do not provide any type of proces-
sor caching further than the Local Store unit, we need to use predictive access
schemes to improve data throughput from LS to the Register File.

The SPU also uses Branch-Prediction in their issue logic. That is that due
to the instruction pre-fetching the code fetches only one branch of a condi-
tional statement. If the execution branch is mispredicted, the SPU flushes its
instruction buffer before continuing computation. This incurs a stall of 19 pro-
cessor cycles during which no data is processed, whilst correct prediction has
no overhead and results in continuous computation.

Branch prediction is used by the compiler to optimize loops, where only
the loop exit results in a pipeline flush. Prediction intrinsics are used to tell the
compiler how to predict the correct branch of execution. It is therefore very
important to minimize the use of conditional within the SPU code and always
predict the more likely outcome. The general solution to this problem is to
compute both branches in full vectorized form and then select the individual
vector items based on a vector of comparison flags.

A particular useful intrinsic tool provided by the SDK libraries is the SPU
decrementer() function. This loads an integer number into a dedicated regis-
ter, which decrements this number on every processor cycle. We can use this
register to exactly measure the number of processor ticks gone since last set-
ting the register. These can then be read within the code via intrinsics to get an
accurate number of processor ticks since the decrementer was started. Hence
we found a way of reliably timing individual sections of code. This is not only
useful when generating optimized pipeline code, but can also provide us with

12

execution times of individual Update functions, and measure stall times for
channel communication.

SPEs communicate with other SPEs, the PPE and the memory units via so
called channels. Synchronization is done via communication primitives which
can be blocking or non blocking. For interacting with other SPEs and the PPE
mailboxes are used. These are special-purpose registers and can encapsulate
one integer in the message. The same type of channel is used for scheduling
DMA to the MFC. SPUs schedule request for data transfers to the MFC via
DMA intrinsics and then read a status register, usually blocking execution to
ensure the data is available. Both types of channel communication may lead to
channel stall, where the SPU spends its time idle. Thus if we have to consider
both types of blocks when analyzing channel stalls.

2.3.3 EIB

The Element Interconnect Bus connects all components of the Cell core with
each other and the memory in a circular fashion via four data rings. Each
ring is 16 bytes wide and can carry several chunks of data, as long as they do
not overlap physically on the ring. Data is transfered clockwise by two rings
and anticlockwise by the other two. Therefore parallel reads and writes from
memory are possible.

Each individual DMA operation takes 8 bus cycles and has a maximum
of 128 bytes. A DMA transfer may consists of several operations up to an
imposed limit of 16KB [1], which corresponds to 256 agents each containing
16floats. For data blocks larger than that several transfers have to be sched-
uled. Consequently the atomic unit of operation is 8 bus cycles long, meaning
that only DMA transfers of less than 128 bytes utilize the rings non-optimally
and are therefore inefficient. Thus we should not fetch less than 8 agents per
DMA transfer.

The theoretical bandwidth of the bus is 204GB/sec, and can has been shown
to be shown to transport up to 196GB/sec in artificial experiments with near
perfect utilization [10]. This is however based on a perfectly circular DMA
scheme where most of the data transfer happens between SPEs. At the cur-
rent point of the project there is no evidence suggesting that execution per-
formance is bound by data latency. Hence we have room to further utilize
parallelism within the algorithm to transform data latency into a bandwidth
problem through efficient localization.

13

Toymodel Analysis

The first step in our investigation into Cell-based VEW simulations is to an-
alyze the performance characteristics of the existing Toymodel prototype. In
order to establish possible areas of improvement, several profiling techniques
have been used to identify bottlenecks, including the use of a Cell emulator
developed by IBM (SystemSim).

This project was based on previous work done by a group of students in-
vestigating several approaches to parallelizing the VEW simulation code, in-
cluding processing on Cell BE [5].

The Toymodel is based on a simplified Java version of the ”LERM-PS”
simulation, which is based on the Lagrangian Ensemble Recruitment Model
(LERM), developed in [6]. It simulates a statically anchored water column
in the Azores region over the duration of two years. Figure 3.1 shows the
biomass of living Phytoplankton within the simulated water column, sampled
per week. It exhibits a VEW-characteristic curve, showing Diatom bloom dur-
ing the summer and autumn period of each year.

Figure 3.1: Toymodel result of 2 year Diatom simulation

The Toymodel represents a subset of the full LERM model. It only simu-
lates Diatoms, which are plant-based plankters. Each Diatom can be in one of
two stages, either Living or Dead. Zooplankton, like Copepods (animal-based
plankters), as well as top-level predators are ignored by the model.

14

Predation between Copepods and Diatoms is not part of this simulation,
so there is no need for the environment processes to model ingestion, ie. the
process of one agent type feeding on another. Ingestion is revisited in section
7.3.1. Bio-optical feedback, the effect of plankton biomass on the Mixing Layer,
is also not modeled. Instead the Physics parameters, such as ambient light and
temperature, as well as other boundary conditions for chemicals are read from
file. The file data is generated by the full Java LERM simulation.

However, the ability to add arbitrary plankton species, as well as other
missing features are considered during the development of our prototype solu-
tion. In later sections we will show that all these features can be implemented
with the existing approach without causing any significant performance de-
crease.

3.1 Execution Structure

The Toymodel simulation consists of two separate code-bases for PPE and SPE
execution. The separation is needed since each platform has its own indepen-
dent assembly format and compiler. The PPE acts as the main control thread by
executing the simulation loop and handling general housekeeping tasks. The
SPEs on the other hand act as dedicated Streaming units, only responsible for
the agent update computation.

The PPE main loop executes all the necessary routines for simulating the
environment processes within the water column prior to the agent update. It
initiates the external agent update via channel communication with the SPEs.
After the external update is completed, the PPE then performs the Particle
Management process to keep the number of agents in the Virtual Ecosystem
within specified boundaries. The structure of the PPE loop (Figure 3.2) is the
same for all models generated by the VEW.

1 for (t = 0; t < 35040; t++) {

2 readPhysics();

3 mixChemistry();

4 updateAgents();

5 updateChemistry();

6 particleManagement();

7 }

Figure 3.2: VEW main loop as executed on the PPE.

3.1.1 SPE

The pseudo code for SPE execution is depicted in Figure 3.3 and works as fol-
lows. Once the SPEs have received the signal to start the agent updates they
first import a block of shared environment data from memory, which contains
physics and chemistry data, specifically the depth of the Mixing Layer, the am-
bient water temperatures and the concentration of nutrient chemicals in each
layer of the column. This data is constant throughout each iteration and only
needs to be loaded at the beginning of the loop body (step 1 in Figure 3.4).

15

1 Receive starting signal

2 (1) Load shared environment data

3

4 while(work to do){

5 (2) Pre-fetch agent block from memory

6 (3) Process agent data

7 if(4 agents of same type)

8 (3.1) run vector update on 4 agents

9 else

10 (3.2) run scalar update on each agent

11 (4) Store agent data

12 }

13 (5) Send environment data to PPE

14 Signal completion

Figure 3.3: Pseudo code for SPE execution.

Similarly, the SPEs record environment feedback data when traversing the
agent array. The external units accumulate requests for nutrient chemicals for
each column layer locally and synchronize these partial requests on the PPE
after the iteration (see step 5 in Figure 3.4). The data accumulated across all six
SPE units is aggregated at the PPE.

Agents are loaded into buffers and processed in blocks of fixed size. The
allocation of blocks to SPUs is determined by hard-coded modular arithmetic
within the SPE update loop and closely resembles Round-Robin. After the
setup each SPE starts processing its associated subset of the agent stream, al-
locating two DMA buffers in the Local Store. The DMA loop follows basic
Streaming principles in that it loads one block of agent data into a buffer, while
processing the other pre-fetched block. Note that steps 2 and 3 in Figure 3.4
happen in parallel to each other. Using the decrementer() timing function
we verified that only the first DMA block of each iteration incurs an idle wait
(as expected), while each other DMA GET transfer is perfectly masked. This
means that the data transfer than the vector computation and is completed be-
fore the MFC channel is checked, which then incurs less than 3 processor ticks.

In the reverse direction, all DMA PUT transfers, where the processed data
is send back to memory, incur the full wait time for a bus cycle (eg. 200 ticks for
128 agents per buffer). The SPU blocks execution until each of those transfers
is completed and processing is interrupted (step 4 in Figure 3.4).

When processing a block of agents (step 3 in Figure 3.4) the Toymodel uti-
lizes the vector processing capabilities of the SPU. There are two update func-
tions for each biological stage, one scalar function written in plain C (3.2), and
one vectorized function using Cell vector intrinsics (3.1). The SPU inspects the
stage of four consecutive agents in turn, and applies the vectorized function
to them if they are all in the same stage. If the agents are in different stages
each agent’s update is computed individually by the scalar function. The same
scalar function is also used to process the remaining agents of the last block
that do not fit into a 4-agent vector.

16

Figure 3.4: Conceptual data movement in the original prototype

3.1.2 Data Structure

In memory, agents are stored in a one-dimensional array. Even though an
agent’s state consists of 13 floating point numbers, a sub-array of 16 floats
is allocated per agent. The alignment to 16 x n Bytes is required due to the 128
bit bus size. This corresponds conceptually to an Array of Structures (AOS)
layout, where each agent represents an aligned structure.

(a) Array of Structures layout used in memory and local DMA
buffers

(b) Structure of Arrays
layout used during vec-
tor processing

Figure 3.5: Agent data layout in global and local memory.

The AOS structure is kept during the DMA transfer to the SPEs. SIMD
processing on the SPU requires all data to be handled in vectors of four. When
utilizing the vectorized update functions we therefore first need to copy the

17

agent state variables to vector float types. Each vector now represents the
same state variable for four agents, and the same transition is done on external
environment variables. This data layout conceptually represents a Structure of
Arrays (SOA), where the array length is fixed to four.

It is important to note that we always require all agents in a vector to be in
the same biological stage, since this determines the update function we need
to apply. In order to provide this agent homogeneity, an ordering loop was
implemented on the PPE which places all dead Diatom agents at the end of
the agent array in memory. This State Change loop was implemented as part
of the Particle Management routine and involves redundant shuffling of dead
Diatom agents in memory, resulting in a significant sequential processing over-
head. Reducing this overhead is one of the main aims of the later parts of this
project. The general homogeneity requirement for agent vectors implies a re-
structuring of the memory layout.

3.2 Performance

3.2.1 Scalability

In order to analyze the prototype’s scalability we need to look at the execu-
tion time with increasing workload. For this we compared run times with
the fastest sequential implementation of the Toymodel, which is written in C.
Comparing the Cell to other processors is tricky, since its individual cores are
clocked at different frequencies. We chose a 1.6GHz Intel Centrino dual-core
processor with 2MB L2 cache and 2GB memory. 1.6GHz corresponds to the
cited PPE clockspeed [10], which is the slowest of the Cell’s processing cores.
The Cell is usually quoted to run at 3.2GHz. This, however, corresponds to the
clock speeds of the SPU’s. A performance comparison against a reference CPU
running at 3.2GHz is provided in section 6.2. We increased the workload on
the x-axis by continuously doubling the number of initial agents for the same
simulation, whilst scaling the Particle Management parameters accordingly.

Figure 3.6: run times with increasing simulation size. Note: Both axis are ex-
ponentially labeled.

18

The results show that the current implementation does not scale well for
large numbers of agents. Although it is comparably faster than the sequential
implementation for the Toymodel’s standard size of 4000 agents, the Cell algo-
rithm shows a non-linear increase increase in execution time. The sequential
version scales linearly, on the other hand. We can see that there is only a small
performance difference for a 64000-agent simulation between the two versions.

3.2.2 SPU Timing

In order to evaluate the prototype exhaustively we also timed the individual
update function (scalar and vectorized) and the stalls incurred by DMA oper-
ations. This was done using the SPU decrementer() tool, which gives micro-
level timings in processor cycles (ticks). Due to the noise of potential dual-issue
executions, decrementer() times may vary slightly. We therefore present av-
erage timing results.

Table 3.1 shows the dominance of vector processing when looking at the
update times for Living Diatom agents. The time taken to perform one scalar
agent update is far greater then the time required for a vector update process-
ing four agents simultaneously. Due to many conditional statements in the
scalar code the Living update produces greatly varying times, which is why
we present a range instead of an average tick number.

When analyzing the DMA stalls in Table 3.2, we can see the effect of Double-
Buffering for the data GET transfers. Compared to the increasing stall times of
the PUT transfers with increasing buffer sizes, the GET transfers only stall for 2
ticks (the time taken to probe the MFC channel). We can therefore deduce that
the buffering strategy successfully masks any data import from memory for
the inner processing loop. However, the reverse is not true: storing the agent
data back to memory leaves the SPU idle for a considerable amount of time.

Stage Scalar Vector
min max min max

Living 504 786 210 218
Dead 168 175 120 124

Table 3.1: Execution times of vector and scalar Update functions in SPU cycles.

Agents GET PUT
32 2 20
64 2 34
128 2 66
256 2 140

Table 3.2: Waiting times due to DMA transfer latency for different buffer sizes,
in SPU cycles.

19

3.2.3 SystemSim

In addition to Decrementer timings we also analyzed the performance of the
Toymodel implementation with the IBM SystemSim simulator during the ini-
tial phase of the project. SystemSim runs a full emulation of the Cell BE core at
flexible levels of detail. At the highest detail it can provide register contents of
the SPE at run-time, including the execution pipeline of the SPU. Thus it can
gather statistical information of the types of assembly instructions executed
on the SPUs and give a detailed overview on execution stalls. The simulator
can therefore give us detailed indications of the causes of the results presented
above.

The simulation runs very slowly, since it is single-threaded and demands a
lot of memory access. Due to long processing times we were not able to run any
simulations past 8000 iterations, therefore giving only an incomplete picture of
the simulation as a whole. However, due to the overall loop structure of the
execution, the gathered data gives a good indication for further improvements
of the code.

The data presented in Figure 3.2.3 was taken after simulating 8136 iterations
of a 4000-agent simulation run on SystemSim. It represents the individual per-
centages of time spent executing instructions and stalling due to several causes.
The causes are listed with their individual percentages of time stalled, and rep-
resent communication stalls on channels, stalls due to mispredicted branches
and dependency stalls.

Executed Code Stalls Communication
SPE Single Dual Branch Miss Dependency Channel Stalls

2 25.3 6 9.9 22.9 31.6
3 24.2 5.6 9.8 19.9 36.2
4 26 6 10.5 21.6 31.4
5 27.5 6.3 11.1 23.1 27.2
6 28.2 6.5 11.4 23.5 25.4
7 28.9 6.6 11.7 24.2 23.6

Table 3.3: SystemSim results, showing percentages of execution time spent on
individual instruction type

The presented data was obtained from running an improved version of the
original implementation, which included triple-buffering, in order to hide all
memory latencies (including PUT transfers). This is due to the fact that the
simulator cannot differentiate between channel stalls due to data transfers and
mailbox stalls created when waiting for PPE processing. For this simulation
we manually verified that all inner-loop DMA transfers stall for less than four
processor cycles using the decrementer() function.

Under this assumption the data presented in Figure 3.7 (based on Table
3.2.3) suggests that almost a third of the overall execution time is spent on the
sequential parts of the simulation loop, while another third is spent on calculat-
ing update code. This identifies the Particle Management and associated agent
array management as a performance bottleneck. The last third is then lost on
different of stalls within the SPU instruction pipeline. Additionally, it should
be noted that there are also a varying number of channel stalls, suggesting an
uneven load distribution.

20

Figure 3.7: Percentages of the overall execution time taken up by executed
instructions, code stalls and communication stalls on each SPU.

Within the instruction pipeline of the SPU branch and dependency stalls
are created due to sub-optimal code preventing the compiler from optimizing
register usage. Branch miss stalls are created when the whole pipeline has to
be flushed due to a mispredicted if-statement. Dependency stalls on the other
hand, refer to assembly instructions on one issue-pipeline (say the arithmetic
pipeline) being stalled until the needed data is loaded into registers by the
load/store pipeline. The SPU creates no-op cycles to fill these gaps until the
other issue pipeline has caught up. The effect of this stalling process is quite
significant, as the data suggests.

The simulator also differentiates between single instructions issued into
one of the pipeline and dual-issues, where two instructions are processed con-
currently by the SPU. The gathered data suggests a relatively weak utilization
of this feature. This can be attributed to the remaining sequential parts of the
update code, which quite possibly keep the compiler from optimizing more ef-
ficiently, and disrupt optimized vector processing. Attention should therefore
be paid to this, when implementing a code generator for the vector update
functions. We should aim to create SIMD vector instructions in a pure sequen-
tial structure, which would allow the compiler to optimize for instruction du-
ality.

3.3 Evaluation

The SPU micro-timing analysis shows, as expected, that vectorized update
code is significantly faster than scalar code. Our main goal therefore consists
of re-structuring the prototype to only use vector updates. This also avoids the
need to generate two types of update functions for a given agent stage.

The vector processing functions used in the implementation are not yet
completely vectorized. There are two utility functions involved which calcu-
late scalar parameters for each agents: the hard coded Random Number Gener-

21

ator and a conversion of physics parameters to the internal column layer struc-
ture. Additionally, a nested loop construct within the chemical pool update has
not yet been vectorized. This accounts for the low dual-issue utilization found
during the SystemSim analysis. We therefore need to manually vectorize the
loop and utility functions before attempting an automated generation of this
code.

There are two usages of the scalar update functions. For one we use scalar
processing to update the remaining agents of the last block that do not fit into a
vector of four. In order to overcome this scenario we will decouple the process
of copying the agent data to the required vector float (SOA) format from the
arithmetic processing. This is based on the fact that only the 13 state variables
of an agent are stored back to memory. By decoupling the update setup and
teardown routines we should thus be able to handle sets of less than four agents
in vector format.

The second uses of the scalar updates is to process vectors of agents in dif-
ferent biological stages. Due to the Agent State Change handling on the PPE,
which throughly orders the agents by stage, only one block during each itera-
tion is heterogeneous. In order to eliminate this special case, we need to sepa-
rate the two stages even further, so they will not overlap within a DMA block.
This requires a major re-structuring of the agent layout in memory. We will
therefore aim to adopt a 2-dimensional agent array layout, where all agents
of one stage are kept in separate arrays. This will also ease the optimization
of the Agent State Change handling itself, which currently is a performance
bottleneck in the prototype.

This multi-array structure has far reaching implications for the Cell version
of the code, since the current DMA localization loop is not able to handle sev-
eral agent arrays. This is due to the hard coded allocation of blocks to SPEs
within the DMA loop. This static allocation further prevents any experimenta-
tion with different scheduling strategies. These would be needed to overcome
the load imbalance evident from the SystemSim analysis. A further argument
for a multi-agent approach is that general VEW simulations usually involve
several species with many more stages. Copepods alone, for example, have 16
different update functions. More complex VEW simulations would therefore
profit from more flexible scheduling.

22

Agent Update Optimization

The development process described in this chapter is aimed at generating an
efficient framework for SPE-based parallel Vector Processing of agent update
code. The main target is the Model Compiler described in section 4.4. In or-
der to achieve this, several structural changes have been applied to the exist-
ing Cell Toymodel. The applied changes additionally resulted in a significant
performance improvement, particularly when scaled to simulations with large
number of agents. The performance gains are detailed in section 4.5.

During development we largely focus on optimization of the SPE code. The
aim is to avoid the use of wasteful scalar computation. We therefore explore
SPU vector arithmetic and management, in order to fully vectorize the agent
Updates. In addition to that, we demonstrate changes to the underlying data-
transfer framework that enable a re-structuring of the agent layout in memory.
The mentioned changes provides a more flexibly structured prototype which
we can use as an execution harness for auto-generated vectorized agent Update
code.

4.1 SPU Optimization

4.1.1 Vector Intrinsics

The vectorization of the original Toymodel Update code was partially com-
plete. The old implementation used two utility functions, as well as a nested
if-construct in scalar format, applied over all four agents of a vector. When
processing scalars the SPU will use a full 128-bit register for any variable com-
puted, resulting in wasted load/store instructions in the assembly code. For
the compiler to optimize dual-issue execution we require a sequential code
format handling each variable as a vector of four. This creates perfectly data-
parallel processing and gives the compiler a chance to interleave load/store
instructions with arithmetic.

Vector arithmetic is coded via SPU intrinsic functions provided by the Cell
SDK libraries. Intrinsics can either be atomic, mapping to exactly one assembly
instruction, or compound. The compiler will handle compound intrinsics as
function calls, unless it is specifically told to in-line via a leading underscore
’_’. Furthermore, for certain arithmetic intrinsics, like modulus-divide, two
functions are defined, one for higher numerical accuracy and one for faster
execution. The latter use the suffix _fast.

23

Nested If-statements can be treated like normal SPU conditionals, where
the inner If is calculated in advance. As with any conditional on the SPEs,
both branches are calculated and the results interleaved according to a vector
of flags.

We can illustrate the performance gain attained from using these optimiza-
tions on the example of the random number generator function rnd() (Figures
4.1 and 4.2). The function is used to calculate the layer an agent moves to
when it is above the turbocline. Applying the scalar function individually to
all 4 agents in a vector takes 32 processor ticks. A call to the vectorized ver-
sion not using in-lining or _fast implementations takes just 20 ticks. There
are two modulus-divides and one floor rounding function used. Switching to
_fast and in-lining these compound intrinsics reduces the execution time to
5 ticks. It is therefore sensible to include these low-level optimizations in any
automated code generator.

1 static int seed = 100001;

2

3 static float rnd(float a) {

4 seed += data.thread_id;

5 seed = seed * 125;

6 seed = seed % 2796203;

7

8 float n = seed % (int)a;

9 n += 1.0;

10 return n;

11 }

Figure 4.1: Scalar RNG function

1 vector float seed =

2 {100001.0f, 432543.0f, 780913.0f, 438901.0f};

3

4 vector float rnd(vector float _a){

5 seed = spu_add(seed, spu_splats(data.thread_id));

6 seed = spu_mul(seed, spu_splats(125.0f));

7 seed = _fmodf4_fast(seed, spu_splats(2796203.0f));

8

9 _a = _floorf4_fast(_a);

10 vector float n = _fmodf4_fast(seed, _a);

11 spu_add(n, spu_splats(1.0f));

12 return n;

13 }

Figure 4.2: Vector RNG function

4.1.2 PRNG

The random-number-generator function represents the only Monte Carlo as-
pect of the simulation. It determines the displacement of Diatoms within the
Mixing Layer due to turbulence. The use of a specified seed guarantees re-
producibility of simulations on a sequential platform. On the parallel Cell

24

Figure 4.3: Padded vector conversion.

implementation, each local node (SPE) keeps its own counter. In order to
guarantee different RNG sequences on all processors the internal SPE identi-
fier (thread_id) is incorporated into the algorithm. As a side-effect of parallel
computation, it is therefore not possible to re-create the exact results of a given
sequential simulation.

During the later stages of the project it was discovered that the given vector
implementation of the rnd() function did not provide a sufficient spread of
random numbers. It was therefore decided to adopt the same algorithm the
production VEW uses, a Mersenne Twister [8].

The Cell SDK provides an off-the-shelf library for Pseudo-Random-Number-
Generation (PRNG) which contains implementations of two algorithms: Kirkpatrick-
Stoll [1] and a Mersenne Twister. We ultimately chose to employ the MT gen-
erator, since it corresponds to the PRNG-method used in the full Java VEW.
The Cell implementation works with low-level bit-shuffling [8] and are very
efficient (the MT-generator function takes 6 SPU ticks).

4.1.3 Vector Conversion

One use of costly scalar functions arises from the need to handle sets of less
than four agents. In order to use vector computation we instead ignore the
remaining elements of a vector. This is similar to padding with zero values. It
is vital for a code generator to separate agent and environment vectors from the
local computation variables, in order to restrict the vector-to-buffer conversion.
Knowing these, we can then create separate setup and teardown functions,
parameterized with the number of agents computed. The skeleton functions
populate and store the state vectors in a loop. This corresponds to traversing
the vectors column-wise in Figure 4.3.

The full VEW Java simulator also uses generic setup and teardown func-
tions for environment housekeeping tasks. These are defined in the XML model
description via specific function calls, which the model compiler uses to iden-

25

tify environment variables. We can thus re-create the standard VEW layout by
adding generic generic static placeholder vectors for each type of environment
call and process the water column data within the same loop as the agent state
data. This creates complete independence between the arithmetic parts of the
update functions from the number of agents processed in a vector. The set of
vectors shared between update and skeleton functions is defined statically in a
separate header file.

1 for(m = 0; m < vectorSize; m++){

2 /** Handling state variables **/

3 if (__builtin_expect((spu_extract(vars_STAGE , m)

4 ==_STAGE_Living),TRUE)){

5 var_data.livingDiatom += spu_extract(_c_new, m);

6 }...

7

8 /** Handling agent variables **/

9 agentIndex = bufNo*AGENTS_PER_DMA+i + m;

10 dma_buf[agentIndex][STAGE] = spu_extract(_stage, m);

11 ...

12 };

Figure 4.4: Vector conversion of state and environment variables in loop.

In order to avoid branch-mismatches we also aim to use as few loops as
possible. The housekeeping arithmetic accumulates particular agent fields,
such as uptake requests for chemicals, or overall population. The accumulated
fields correspond specified VEW functions, like nutrient uptake, and needs to
be hard coded into the generation of the setup and teardown functions. The
accumulation of environment properties is performed on a per-layer basis, and
uses several conditional branches. At this stage it is vital to correctly predict
the dominant branch taken for the conditional, in order to fine-tune simulation
performance by avoiding SPU pipeline flushes.

Another low-level optimization was used in the original Toymodel code. If
the vector length is known to be four, we can unroll the loop for vector pop-
ulation, allowing the SPU compiler to optimize data access. This yields small
speedups, however is inconsistent with the padding solution. If fine tuning is
needed the unrolled loop can always be added at a later stage, guarded by a
conditional.

1 _stage = (vector float){

2 dma_buf[bufNo*AGENTS_PER_DMA+pos][STAGE],

3 dma_buf[bufNo*AGENTS_PER_DMA+pos+1][STAGE],

4 dma_buf[bufNo*AGENTS_PER_DMA+pos+2][STAGE],

5 dma_buf[bufNo*AGENTS_PER_DMA+pos+3][STAGE]

6 };

Figure 4.5: Conversion of agent state variable STAGE in unrolled fashion.

26

4.2 Data-Transfer Framework

4.2.1 Triple-Buffering

An easy performance gain was achieved by adding a third buffer to the tra-
ditional Double-Buffering DMA loop. This masks all DMA latencies due to
PUT transfers. The same Triple-Buffering strategy was adopted for the second
DMA loop, intended to transfer additional blocks of control data between SPE
and PPE. For this we set up three buffers for each type of control data structure
and use one common iteration counter to index the according buffers. We can
thus synchronize the control buffers to the according agent data buffers.

4.2.2 Task and Feedback Farming

In order to provide more flexible load scheduling for the SPEs we decided to
implement a centralized ”Farming” DMA framework. This aims to decou-
ple the SPEs from scheduling and control by calculating the allocation of agent
blocks onto processors on the PPE. This feature will not only allow us to sched-
ule several agent arrays independently, but will also provide the possibility of
investigating into more effective load-balancing schemes.

Since we aim for a centralized scheduling process we first need to find a
way of transferring the relevant control data to the SPEs. This mainly includes
memory address and size of the agent block to be processed. We therefore
introduce a new Task Block (TB) data structure which describes one block of
agents. A 2-dimensional array of Task Blocks is held in memory, one array for
each SPE, allowing a scheduling process to allocate tasks by pre-calculating the
relevant addresses and block sizes. Since the number of blocks to be processed
changes dynamically with each iteration, we allocate the maximum array size
possible and keep dynamic counters associated for each Task array. The same
over-allocation method is used for allocating memory space to agents.

It is important to note that a block’s address needs to be known in advance
to pre-fetching the data into the GET buffer. For this reason a 2-step-lookahead
scheme was adopted (Figure 4.6). When processing agent block n, we pre-fetch
data block n + 1, whilst fetching the address of block n + 2. Due to the asyn-
chronous DMA provided by the Memory Flow Controller, we can schedule
the address fetching in parallel to update processing and agent data transfers.
This effectively masks all memory latency of fetching Task Blocks, apart from
the two initial accesses.

Since TBs are relatively light-weight compared to agent data we can in the-
ory add more control data to them. During the course of this project we have
not found the bus to be a performance bottleneck. To verify this assumption
checked that the added data transfer did not compromise any latency hiding.

Similarly to Task Blocks we introduced Feedback Block structures (FB).
These contain data gathered by the SPEs that can be used for environment
processing and agent management on the PPE. We utilize this feature in a
later section for improving the Agent State Change loop. This follows the gen-
eral Streaming principle of turning a computational problem into a bandwidth
problem.

27

Figure 4.6: Conceptual data transfer loop executed on SPE with associated par-
allel DMA.

4.2.3 Scheduler

The Scheduler() process is run on the PPE before invoking the agent update
loop on all SPEs. It traverses individual agent arrays, calculating memory ad-
dresses for agent blocks, and allocates them to the appropriate SPE task queue.
It approximates a global Round-Robin scheme very similar to the original im-
plementation.

The main advantage of the scheduler is that it can handle several arrays of
agents. It keeps a shared count of the length of each task queue, allowing it to
append tasks indefinitely. The current implementation marks the last block in
each queue via a flag in the TBs, signaling the end of the update loop to the
SPEs.

4.3 Memory Organization

Streaming architectures require buffers of homogeneous agents, in order to
process each buffer generically with one associated update function. In or-
der to exploit Streaming for optimized update computation, all parallel VEW
implementations should therefore adapt a memory structure which separates
agents by their internal state (biological stage). For this project we use a two-
dimensional array of agents, with each sub-array holding agents of one partic-
ular stage.

28

With the availability of a flexible scheduling mechanism, coupled with a
dynamic Farming DMA cycle, we are able to separate agents by their internal
state. We can thus revise the memory structure, creating a set of homogeneous
agent arrays. This eliminates the last usage of scalar update functions for het-
erogeneous agent vector (see Figure 4.7.a), and paves the way for automated
update code generation.

(a) Single agent array with heterogeneous agent vector

(b) Multiple agent arrays per stage

Figure 4.7: Agent layout in memory

One key property of VEW simulations is that agents may change their bio-
logical stage dynamically during the run of a simulation. This state change of
LE agents may occur non-deterministically from the point of view of the exe-
cution framework. For this reason the separation of agents by biological stage
has to be revised after each iteration. In order to detect random stage changes
the previous implementation used a sequential loop traversing the complete
agent array, placing all dead Diatom agents at the end of the array. Since this
loop ignored previous offset counts of dead agents it would inevitable also tra-
verse the already dead section of the array. This resulted in a wasteful and
memory-intensive shuffling of dead agents. The natural separation of the two
agent types now prevented this, yielding additional performance increase. The
immediate detection of agent state changes is a particular parallel artefact of
multi-core VEW implementations. We shall show how to reduce this overhead
even further in the next chapter.

Implementing the change in memory layout also has quite a significant im-
pact on the sequential parts of the simulation, in particular Particle Manage-
ment (PM). All PM search routines now need to be parameterized with the
agent sub-array, resulting in smaller search spaces. The effect of this is un-
fortunately not very obvious in our Toymodel example, since it simulates a
very large number of living Diatoms, compared to relatively few dead agents.
In general, however, the stage populations may be arbitrarily balanced across
different species and stages of the full VEW implementation. A more evenly
balanced distribution of agents across arrays will have a positive impact on
PM performance.

In order to discuss potential memory layouts for the VEW algorithm we
have to keep in mind that the VEW stores agents by layer in the column be-
cause most environment processes, like nutrient exchange and predation in-
gestion, are calculated based on the layers an agent traverses during one timestep.
This approach, however, is inapplicable to parallel streaming for several rea-
sons. Firstly there are usually not enough agents in one layer to fill a buffer.

29

More importantly, though, agents constantly move, which would result in fre-
quent re-allocation of agents within the multi-dimensional array. Due to the
dependence of the update kernel, a stage separated layout is therefore the most
appropriate for streamed update processing.

The layer-based environment data, however, is still needed for s sequential
PPE processing. Due to dynamically changing agent states it is accumulated
on the SPEs, since they perform an exhaustive traversal of all agents. Of par-
ticular interest is hereby the agentsPerLayer counter, which is used by the
Particle Management process in conjunction with the overall agent count per
stage-array. Since the array-length per stage is maintained on the PPE (SPEs do
not create or remove agents), these two parameters need to be tightly synchro-
nized. Otherwise the PM will remove incorrect agents from the simulation,
which caused frequent problems during development. The effect of this hap-
pening was usually not visible in the output until several thousand iterations
later in the simulation. For this reason, a lot of debugging effort went into this
stage of the development process.

4.4 Model Compiler

After re-structuring the execution framework and eliminating scalar update
functions, we were able to re-define the prototype’s file structure. This al-
lowed us to separate all Diatom specific update code and model parameter-
izations from the execution kernel on the SPE side. Subsequently, we were
able to implement a generic code generator which creates the plankton specific
vectorized update arithmetic code from an XML model description. This was
done by extending the current Java Model Compiler.

The Model Compiler creates a fully vectorized encoding of the arithmetic
computation specified in the model description file for plankton species and
stage. It also creates generic setup() and teardown() functions specific to dif-
ferent species of plankton agents. The code generator creates agent-specific
files that can be plugged into the prototype code base, resulting in a Cell-based
VEW simulation similar to the Toymodel prototype. For the development pro-
cess we used a Diatom-only version of the LERM [6] simulation the Toymodel
is based on. After decoupling the Update arithmetic from SPU kernel execu-
tion our prototype simulation can be used as template code to generate the rest
of the required simulation code.

Several performance issues still exist within the sequential PPE processing
components. However, we chose not to pursue this route, in favour of a thor-
ough investigation into the performance properties of the sequential PPE code
components, in order to attempt further performance speedups (chapter 5).

4.4.1 VEW Model Compilation

VEW model descriptions are coded in XML by the VEW GUI and describe in
detail all aspects of the simulation to be generated. The VEW model sepa-
rates plankton agents by Functional Groups, which usually represent particu-
lar species of plankters. Each group has associated with it many update equa-
tions, each modeling a specific biological process, like respiration and photo-

30

synthesis. Every species further defines several internal stages an agent can
be in, and maps individual biological equations to each stage. The Cell model
compiler then accumulates the equations in order to create one vectorized up-
date function. The SPU kernel then applies this function to the agent’s internal
state during each timestep of the simulation. An agent’s state consists of sev-
eral variables defined in the model description and is common to each agent
of a particular Functional Group.

Since the set of internal state variables is specific to each Functional Group,
the setup and teardown functions need to part of the model generation. The
Model Compiler thus needs to maintain separate lists of environment, agent
and local variables for each agent type. The environment and agent variables
are defined statically in a global header file, accumulating all variables needed
by all Functional Groups.

The modeling language Planktonica [4] is used to code the biological prim-
itive equations which form the update code. In addition to standard mathe-
matical expressions it also provides several environment functions. These are
used by agents to handle interaction with the water column. Since requests
are handled on the PPE between iterations, the request data is buffered per
agent as part of an agent’s internal state. Environment request data also gets
accumulated per column layer on the SPEs and send back to the PPE for se-
quential processing at the beginning of the next iteration. Therefore, we need
to accumulate the requests made during an update in the teardown function
(see section 4.1.3). The request accumulation is a generic process for each envi-
ronment variable, where the compiler adds generic housekeeping code for de-
fined sets of variables. However, each provided environment function needs
hard coding into the teardown generator function.

The full Java implementation of the VEW features several environment
feedback loops. One loop, the uptake and release of nutrient chemicals into
the water, is also included in the Toymodel prototype. For nutrient uptake, the
simulation buffers the requested amounts of chemicals per agent in the agent’s
internal state and accumulates the requests for each layer. At the beginning of
the next iteration, the requested amounts are evaluated on the PPE, and a pa-
rameter is published to all SPEs which describes the rate at which the requests
have to be adjusted for each column, based on nutrient availability. The SPE
code then adjusts the requested amount accordingly.

There are several further feedback loops with a very similar structure to
this in the full VEW, most importantly ingestion rates due to Predation. How-
ever, since all these loops are calculated per layer and are adjusted between
iterations, the general accumulation setup of the Nutrient uptake functionality
can generically be extended to this.

31

4.5 Performance evaluation

As a result of Update code vectorization, the performance of the prototype
simulation increased significantly. We will now analyze the execution times
of the improved Toymodel code and it’s scalability for increasing numbers of
agents. In order to establish further areas of improvement we will also pro-
file the individual run times of the update loop in comparison to sequential
processing components run on the PPE. This will guide the investigation into
performance gains from PPE execution in chapter 5.

During the analysis we compare the current Cell prototype to a sequential
C implementation of the Toymodel simulation. This code is also a product of
[5] and represents the fastest known sequential implementation of this partic-
ular simulation. Furthermore, the C implementation uses a similar agent array
layout in memory, with separate arrays for agent of different stages.

Finding a reference processor for run time comparisons with the Cell is
hard, since the different cores on the Cell chip run at different clock speeds.
The SPEs are quoted to run at 3.2GHz, whereas the PPE is clocked at 1.6GHz.
For our experiments we chose a 1.6GHz Intel Centrino dual-core CPU with a
2MB shared L2 cache and 2GB RAM. The 1.6Ghz clock speed was chosen in
order to match the slowest Cell core (PPE). The choice of a dual-core reference
architecture was motivated by the fact that the SPEs cannot run an operating
system. The dual-core architecture generally runs the OS on a different thread
to the updates, in the same manner as the PPE runs the OS separate from the
SPEs. The OS chosen for both platforms is Ubuntu Linux version 8.10.

We will also compare the achieved results to the original Cell implementa-
tion of the Toymodel. For the purpose of scalability analysis the x and y-axis
on all diagrams are labeled exponentially, in order to identify trends with in-
creasing model sizes. We quote the initial number of agents on the x-axis. It
should be noted that the agent size of the simulation varies over time, but fol-
lows the same trend for each simulation of the same type. We can therefore
assume that the true simulation size is still linearly growing with the initial
number of agents (see section 6.1.2).

The run times presented in Figure 4.8 suggest a very clear performance
improvement over the original Cell implementation, as well as the sequential
code. The structural optimizations applied not only yield the expected linear
improvement, but also lowered the scalability gradient significantly. It is im-
portant to note, however, that the obtained execution times still form a curve,
and hence the simulation does not scale linearly for large simulations. We can
therefore suggest that for very large numbers of agents the sequential imple-
mentation will remain the most efficient, since it seems to scale perfectly linear.
On the other hand, the importance of a separated agent structure in memory,
as well as consistently vectorized updates, is highlighted by the performance
gain achieved the original Cell code.

The optimizations applied to the SPU data-transfer loop (section 4.2), as
well as the full vectorization of the update code (section 4.1.1) are responsible
for linear performance increase. This corresponds to a downward translation
along the y-axis in Figure 4.8. The same vertical translation can also be seen on
Figure 4.9, which furthermore shows that the update code is a linearly scalable
process.

32

Figure 4.8: Execution times for Toymodel simulation on Cell and sequential C
code.

Figure 4.9: Update execution times of Cell and sequential C implementation.

33

In addition to the linear speedup, the separation of agent arrays described
in section 4.3 lowers the gradient of the run time increase shown in Figure
4.8. This is best illustrated by comparing the individual execution times of
the sequential Particle Management component of the algorithm. This process
traverses the complete agent array several times, in order to identify particular
agents to manage. The PM search routines are invoked per biological agent-
stage though, resulting in unwanted large search spaces for a single-agent-
array setup. In particular the Toymodel PM rules heavily merge Dead agents, in
order to keep their numbers low. Thus the separation of agent-array types now
causes the Dead agent search space to decrease drastically, since the number of
Living agents is usually greater by several orders of magnitude. This reduces
PM run time in a non-linear fashion and lowers the scalability gradient, as can
be seen in Figure 4.10.

It is also important to note that, although strongly improved, the Particle
Management routines are much slower on the Cell than on the x86 architecture
(Figure 4.10). A close look also suggests that the sequential components are still
a source of non-linear run time increase. This causes the overall efficiency of
the parallel VEW algorithm to decrease constantly, resulting in non-linear per-
formance scalability. This is the result of Amdahl’s law (section 2.2.3), which
dictates that the sequential parts of any algorithm limit the parallel scalability.
In order to find the source of the non-linear performance decrease we therefore
have to look closer at the sequential PPE processes of the algorithm.

Figure 4.10: Particle Management run times of Cell and sequential C imple-
mentation.

34

Sequential Components

Following Amdahl’s law (section 2.2.3), the overall parallel speedup is always
limited by the run time of the slowest sequential component of an algorithm.
In this chapter we will therefore analyze the impact of the sequential PPE pro-
cessing functions on the overall performance. As discovered in section 4.5, the
sequential overhead of the simulation still prevents a perfectly linear run time
scalability, which originates from the non-linear scalability of sequential PPE
processing. In order to overcome this limitation we therefore need to gain in-
sight into the execution of the most significant sequential components of the
simulation.

There are two significant sequential components running on the PPE, the
Particle Management process and the Agent State Change loop. Both func-
tions are concerned with agent management and include linear searches over
the whole agent array. We therefore need to look at the underlying memory
structure in conjunction with the hardware implementation of the Cell, in or-
der to explain the observed performance.

5.1 Memory: AOS vs. SOA

Within the Stream Programming Paradigm there exist two types memory lay-
outs that can be adopted to agent based simulations. In a Structure of Arrays
(SOA) organization, we define one general agent structure and represent each
agent field as an array of values to define multiple agents. Conceptually, this
layout is used for vector processing on the SPEs, where four agents are kept as
a collection of vector float fields. In main memory, however, agents are kept
in an Array of Structures (AOS) layout, where each agent is held in an aligned
continuous block of 16 floats, and organized in multiple arrays (see Figure
4.3 in section 4.1.1. Since a float requires 4 Bytes, each agent occupies 64B of
memory.

Furthermore, there are two predominant types of data access within the
sequential agent management routines. Both functions perform a linear search
through individual agent arrays, in order to identify sets of agents which will
be copied to a different memory location.

The agent copy process itself works on each field (float) of a single agents,
hence it reads and writes continuous blocks of data. Since the PPE’s L1 Data
Cache (DCache) uses 128 Byte atomic cache lines, it will copy two consecutive
agents on accessing one field on the first agent. Thus individual agent copies

35

are efficient, compared to the SPEs, which access agents in bulks of four and
have no automated cache hierarchy.

Furthermore, the PPE’s 512KB L2 cache is write-back. This means it will
attempt to perform all data writes on-chip and hold off writing the data to
memory until the cache contents are flushed [1]. Hence, when writing several
agents to a condensed part of an array, for example when copying all newly
dead agents to the end of the dead array, all copied Dead agents will be written
to memory in one bus transfer.

In contrast to single-agent copies, a full scan of the an agent-array causes a
much more erratic memory access pattern. Both sequential processes search an
entire agent array by looping over each agent exhaustively and examining one
or two agent fields. Since this access pattern is non-aligned with the agent data
it will therefore cause several cache misses within the PPE cache hierarchy.
Each cache line within the L1 DCache consists of 2 agents, which will cause
arraylength/2 cache misses. If the PPU does not find the next agent in the L1
cache it will look into the L2 cache. The L2 cache lines are also 128 Byte wide,
but are treated as sets of 8 [1]. Thus we obtain arraylength/16 L2 cache misses
which will trigger an instant data transfer from memory. Even though the bus
has a high-bandwidth, it is designed for high throughput through buffering.
The more erratic point-to-point data load into the L2 cache causes several small
one-directional data transfers. Thus, if there is no predictive cache load, the
search traversal will continuously be interrupted by bus transfers.

When analyzing the data access patterns of the sequential processing com-
ponents we need to keep in mind that single-agent copy operations use the
PPE’s cache hierarchy very effectively, while exhaustive linear searches are
costly and inefficient when using AOS agent layout in memory.

5.2 Agent State Change

The Agent State Change loop is a prime example of the type of data access
use within the PPE components of the VEW simulation. The loop identifies all
agents kept within the Living stage array, that changed their internal stage to
Dead within the last iteration. That is to say that it looks for all newly dead
Diatoms and copies them to the appropriate agent array. As such it is an arte-
fact of the homogeneity criterion imposed by the Streaming paradigm on VEW
simulation, and can be rated as a pure parallelization overhead.

In the previous chapter we have shown that, although linear in nature, this
overhead is larger than the time taken for parallel updates itself. That is due to
the fact that this function must be run before the Particle Management process,
and is the first component running on the PPE which has to traverse the whole
Living agent array during each iteration. We will therefore analyze the loop’s
structure and copy patterns and show a technique to significantly reduce this
overhead, using SPE meta-data transfered via the implemented feedback loop.

36

5.2.1 Linear Search

This loop’s implementation caused a severe performance bottleneck in the orig-
inal Toymodel code. When all agents were kept in a single array, the loop
would copy each dead agent it encounters to the end of the array and fill its
space with a living agent. The one-pass traversal of the agent array, however,
would ignore the offset calculated during the last iteration, causing it to apply
the same technique to the block of dead agents already located at the end. This
would cause a complete re-shuffle of all agents in the Dead section of the array,
where each Dead agent switches place with another Dead one. This results in a
non-linear increase in run time for larger amounts of agents.

(a) Original pattern on single agent array.

(b) New pattern traversing Living agents array in
one pass.

Figure 5.1: Linear search based Agent State Change copy patterns.

With the introduction of stage-separated homogeneous agent arrays, the
performance of this loop was reduced to a linearly increasing overhead. Due
to array separation the unintended agent shuffle was avoided, and the search
results in one complete pass over the Living agents. In the Toymodel, the Living
agents far outnumber the Dead ones, due to the fact that the Particle Manager
rules aim to merge all Dead agents into one agent per layer. Therefore the search
complexity decreases only minimally with increasing agent counts, since the
overall number of dead agents in the column is mainly constant.

The algorithm thus traverses the complete Living agents array, copying each
Dead agent it finds to the end of the Dead agent array. At the same time it
removes the agent by copying the last agent in the Living array into the vacated
spot and decreasing the array length. It then checks the new agent’s stage in
this slot again before continuing its traversal.

During the search it inspects one field of each agent (the stage), resulting in
the skipping pattern detailed in the last section. Thus it incurs regular cache
misses, resulting in low utilization of the PPE cache hierarchy and irregular
data load via the bus. This overhead, however, is limited by the number of
Living agents per iteration.

37

5.2.2 Indexed Agent Copy

In order to reduce the overhead create by the linear search we introduced a
technique to prevent the erratic search pattern. This was added the current
version of the prototype and included the use of the Feedback loop imple-
mented as part of the Farming DMA Framework. The idea is to prevent the
PPE from traversing the complete agent array by gathering the required meta-
information when performing the parallel agent update.

Since the SPEs convert each agent field into a vector at some point of the up-
date iteration we can use branch-prediction to efficiently detect state changes
on the vector level. The teardown() function returns a flag vector which gets
transformed by the DMA loop into offsets within the processing block of agents.
A dynamic array of intra-block offsets is then transfered to memory within
a Feedback block, whose memory address into a synchronized to the corre-
sponding Task Block. Due to Triple-Buffering no significant overhead is intro-
duced.

Knowing the individual block offsets, the PPE can calculate indexes into
the agent array for each Living agent that experienced a state change during
the last iteration. Since the pre-calculated offsets are static, we have to defer the
removal of dead agents withing the Living array until all of them are copied to
the Dead array. Thus we require two passes at the Living array, but we do not
have to inspect every Living agent.

Figure 5.2: Indexed Agent State Change copy pattern without searching agent
array.

This approach utilizes the PPEs cache hierarchy much more efficiently, since
it only accesses individually targeted agents. Thus the 128 Byte cache line ac-
cessed for reading an agent contains all floats of this agent’s state. Addition-
ally, copying all newly dead agents to one continuous area of memory causes
only one data write transfer on the bus, due to the write-back property of the
PPE’s L2 Cache.

The results of the implementation change are small when timing the over-
all run time performance, since for large simulations the Particle Management
routine dominates the PPE processing. However, individual timing of the
Agent State Change run time added over the full simulation (35040 iterations)
shows the performance improvement gained by the technique (Figure 5.3(a)).
It is important to note that the search loop used in the previous implementation
is very similar to the searches used for Particle Management. When analyzing
the PM function we need to keep in mind, however, that the PM requires sev-
eral exhaustive linear searches over individual agent arrays.

38

Agents Linear Search Indexed Copy
4000 9.2 0.3
8000 15.8 0.9

16000 27.1 0.9
32000 53.3 1.5
64000 108.9 3

128000 243 6.1
256000 525.6 10.7
512000 1089.5 (18min) 21.1

(a) run times in seconds.

Figure 5.3: Indexed vs Linear Search copy loop.

5.3 Particle Management

As identified during previous investigations [5], the current implementation
of the Particle Management is not applicable for parallel execution. Following
Amdahl’s Law the scalability of the overall algorithm is limited by the most
costly sequential component. The PM presents such a bottleneck for any par-
allel VEW implementation. Although the PM is intended to provide a balance
between model accuracy and computational cost, on the Cell architecture Par-
ticle Management becomes the dominant function within the algorithm. This
can be seen when comparing the individual PM run time with the overall run
time of the simulation in Figure 5.4.

In a general VEW simulation Particle Management is run after every it-
eration. This is not necessary for the Toymodel simulation, however, where
running PM once every simulated day (48 timesteps) is sufficient to achieve
the intended accuracy. For simulations with small numbers of agents this does
yield a small performance increase. For large simulations, on the other hand,
the PM’s impact on performance remains.

Figure 5.4: run times for exponentially increasing simulation sizes, showing
dominance of Particle Management.

39

5.3.1 Split and Merge

Particle Management is intended to limit the overall number of agents simu-
lated in the water column. It is designed to ensure that the number of agents in
each column layer is within a specified range throughout the simulation. This
balances model accuracy with computational cost.

When identifying a layer with an insufficient agent count the PM will split
the largest agents in the layer until the minimum layer count is achieved. When
splitting an agent the process creates a new agent with an independent trajec-
tory. It copies the agents internal state and assigns half of the original sub-
population to each agent.

Similarly, when encountering a layer with too many agents, the PM will
merge the two agents with the smallest subpopulation within the layer, until
the agent count is below the specified maximum. The Merge function calcu-
lates a weighed average between the two agents for every field of the internal
state, before adding the according sub-populations.

The PM uses model-specific rules to determine minimum and maximum
boundaries. These rules are specified per agent type (stage) for sets of layer
within the column, including the set of layer above the turbocline, which changes
dynamically. The SPEs accumulate the numbers of agent of each type for each
layer. Thus the PM knows the layers which need splitting or merging. How-
ever, identifying the individual agents to split/merge requires an exhaustive
traversal of the agent array. This linear search loop is very similar to the one
used for identifying agent state changes, in that it only inspects the agents cur-
rent layer and sub-population, resulting in a non-linear memory access pattern.

The linear search pattern is applied once for every layer that needs splitting,
in order to identify the set of largest agents within the layer. The Merge process,
however, can require several searches per layer, since it can only ever merge
two agents at once. Thus, when the number of necessary Merges is greater
than half the number of agents in the layer, it will apply a Divide-And-Conquer
method, halving the number of agents in the layer per invocation. This worst-
case-merging mainly happens for Dead agents with a small search space. Thus
the overall number of invocations of each PM function type scales linearly with
the number of agents, as can be seen in Figure 5.5.

Figure 5.5: Total number of PM function invocations.

40

5.3.2 L2 Cache

The overall PM run time shows a non-linear scale factor, whereas there is a
linear number of Split and Merge calls. The reason for non-linear performance
curve must therefore be due to hardware features. Indeed, the large difference
in PM run time between Cell and the x86 platform (Figure 4.10 in section 4.5)
suggest a significant impact on PM performance due to the PPE’s cache hierar-
chy and memory connection.

The main hardware limitation we identified was the size of the PPE’s L2
cache. The PPE features a 512KB cache size, which corresponds to 8K agents
of 64B. The x86 CPU used for comparison, on the other hand, has a 2MB asso-
ciated L2 cache, which can hold up to 32K agents. The particular number of
agents in the column, however, varies over the run of the simulation. Thus a
simulation starting with 16000 agents spends a large number of iterations with
less than 8K Living agents.

This means that all linear searches of the Living array can be done on-chip
and the agent array only needs to be read once for the duration of PM pro-
cessing. Similarly, due to the write-back property of the cache all agent copy
movement will be written only once. If the simulation consistently contains
more agents than the L2 cache can hold, the PPE will have to flush and re-load
the cache for individual partitions within the agent array, resulting in several
full cache reads and writes for each linear search traversal.

This effect can be shown by comparing the individual PM run times of Cell
implementations with and without the Indexed Copy method detailed in the
previous section. Figure 5.6 only shows a significant run time difference for
simulation sizes below 16000 agents. This is due to the fact that the Agent
State Change loop is executed before the PM routines, which causes it to load
the complete agent array into the cache prior to PM execution. The trend of the
pre-cached implementation, however, suggests PM execution time increases
linearly with a steep gradient.

A similar increase in slope gradient can be observed for PM run on the x86
comparison architecture. Since simulation size and implementation of the PM
code are equivalent between the sequential implementation and our Cell pro-
totype, we can estimate equivalent PM workload between the the simulations.
The sequential C implementation was run on a 1.6GHz dual-core CPU with
2MB L2 cache, which is equivalent to 32K agents. The predicted gradient in-
crease for models with more than 32000 agents can be seen in Figure 5.7. It
is important to note that the PM function executes much faster on the x86 ar-
chitecture though, suggesting a far superior cache hierarchy and memory-bus
connection.

Assuming that PM execution time progresses linearly after exceeding the
L2 cache agent boundary, the curve in overall prototype performance (Figure
4.8 in section 4.5) can thus be interpreted as the PM gradient ”overtaking” the
linear Update run time due to a steeper gradient increase caused by L2 Cache
loads.

41

Figure 5.6: Difference in individual PM run times due to previously caching of
the agent array.

Figure 5.7: Sequential Particle Management execution time.

5.4 Component Evaluation

As shown in Figure 5.4, the Particle Management component dominates the
overall execution time of the simulation for large numbers of agents. Thus,
the changes applied to the Agent State Change loop in section 5.2 are barely
noticeable on run time graphs. In this section we will therefore analyze the
contribution of the individual sequential components discussed in this chapter
towards the overall execution time, in comparison to the parallel update run
time.

Figure 5.8 shows clearly how the linear Update component gradually di-
minishes with growing agent numbers. Eventually the agent copy and PM
dominate the execution time.

The immediate effect of the indexed agent copy approach can be seen in
Figure 5.9. This method shrinks the parallel overhead due to agent ordering to
insignificance. The resulting graph reveals how the PM grows at a larger rate,
gradually dominating the performance of the prototype for high agent counts.

42

Figure 5.8: Percentage of run time components with Linear Search Agent State
Change.

It is worth noting that the relation between Update code and PM run time
remains constant from 4000 agent to 8000 agent models. After surpassing the
L2 cache size equivalent, however, we can see how the PM component scales
at a higher rate, causing increasing performance dominance.

Figure 5.9: Percentage of run time components with Indexed Agent State
Change.

43

Discussions

In order to evaluate the overall success of this project we first need to verify
that none of the changes introduced into the prototype simulation compro-
mised the correctness and accuracy of the simulated model. In this chapter
we will therefore discuss the results obtained from different implementations
of the Toymodel simulation and in order to estimate the value of the created
prototype. For this we need to keep in mind that we cannot re-create identical
simulation runs between sequential and parallel simulations due to parallel
Random-Number-Generation. Thus we need to investigate the overall shape
of the output graphs.

After detailing the main performance improvements achieved in this project
in sections 4.5 and 5.4, we will furthermore evaluate the achieved parallel
speedups and overall parallel scalability of the VEW algorithm on the Cell.
This will give insight into the the performance advantages and limitations ex-
pected from Cell-based VEW simulations.

6.1 Model Correctness

In this section we analyze the results of different implementations of the Toy-
model simulation used throughout this project. We aim to show, that none of
the changes applied to the Cell implementation compromised the simulated
output. This is a difficult task, since we cannot reproduce the exact results
of a sequential implementation on a parallel platform, as described in section
4.1.2. The results of Java simulations were obtained on the 1.6GHz reference
architecture detailed in section 4.5.

6.1.1 Biomass

The biomass of individual plankton species is the main evaluation criterion for
VEW simulations. The expected behaviour of Diatoms is well known and doc-
umented in [6]. We therefore present the overall count of living Diatom cells
in the virtual water columns. All simulations run during this project simulate
a Diatom ecosystem simulated over the course of two years in a statically an-
chored water column in the Azores region. We sampled the biomass calculated
by the simulation per simulated week.

44

Figure 6.1: Living Diatom biomass simulated over 2 years by the Toymodel.

When analyzing Figure 6.1 we can see that our performance-optimized Cell
implementation matches the results of the original Cell Toymodel quite closely.
A perfect match cannot be expected, since we changed the Random-Number-
Generator, resulting in an overall different simulation. One has to consider that
all VEW simulations represent noisy systems. Thus a general error is included
in any model, resulting in no two simulations producing identical outputs.

However, we can identify the characteristic shape of Diatom population
growth. Two blooming periods are clearly visible during the summer months.
A secondary peak can also be seen in the diagram, representing the autumn
bloom of Phytoplankton. This bloom is generally smaller than during the sum-
mer period and is caused by the sunlight traveling to deeper layers of the col-
umn, which provide additional nutrients to the Diatoms.

Both Cell implementations produce results that significantly differ from the
ones obtained by the sequential C implementation. Although the overall shape
during the second year shows VEW characteristics, an overall decrease in pop-
ulation size has to be noted. This hints at a loss of nutrient chemicals, providing
insufficient food for Diatoms to achieve the population sizes of the sequential
implementation. It should also be noted that the Cell implementation of the
Toymodel does not include a particular feature of the full-scale VEW arith-
metic, which recycles nutrients that would drift out of the open bottom-layer
of the water column during the course of the simulation.

Since this project is largely concerned with run time performance, we chose
not to pursue further model debugging on the prototype in favour of the anal-
ysis of sequential components presented in chapter 5.

6.1.2 Agents

Throughout this project we have investigated the performance scalability of
VEW simulations by increasing the initial number of agents in the column.
This is based on the assumption that all implementation of the Toymodel show
equivalent progressions of agent counts during one simulation. We verified

45

this assumption on numerous occasions for all Cell implementations by sum-
ming the total number of individual Update function invocations. As expected
these increased linearly with the increasing number of initial agents.

In Figure 6.2 we present the number of agents in the virtual water column
over the course of a two year simulation for the most recent Cell prototype, as
well as the sequential reference simulation code written in C. We can identify
largely similar patterns for both models. The small differences exhibited can
be attributed to the overall difference of the simulation detailed in the previous
section. For the purpose of this investigation we can therefore conclude that the
initial number of agents in any VEW model implementation gives an accurate
indication of the overall simulation size, and hence the total work load of the
parallel algorithm we are investigating.

Figure 6.2: Number of agents in the virtual water column over two simulated
years.

6.2 Performance

Several performance gains have been achieved throughout his project. In sec-
tion 4.5 we discussed the improvements gained on Update code computation
from parallel SPE vector processing, and showed how this scales linearly to
large simulation sizes. However, this comes with an associated cost. In section
5.4 we detail the parallel overheads created by this parallelization and showed
a technique for eliminating one costly search routine.

In this section we will now analyze the achieved parallel speedup of the
vectorized Update code over the fastest known sequential implementation.
This represents the only form of pure speedup due to parallelism in our proto-
type implementation. We will then highlight all the restrictions imposed by the
current Cell hardware on the sequential parts of the code, in order to evaluate
the Cell as a platform for large VEW simulations.

46

6.2.1 Speedup and Scalability

In section 4.5 we used a 1.6GHz x86 dual-core CPU as a reference platform
for the Toymodel simulation, in order to match the speed of the slowest cell
processing core. The Cell’s fast SPE units used for parallel update computation
run at 3.2GHz though. We therefore conducted a second series of sequential
simulations on a different reference CPU clocked at 3.2GHz. This processor is a
quad-core Intel Xeon x3350 with 12MB L2 cache and 2GB memory. It should be
noted though that this machine uses faster DDR3 memory (compared to DDR2
used in the other reference setup), providing a quicker memory connection via
the Front Side Bus.

The speedups detailed in Figures 6.3 and 6.4 are calculated from the in-
dividual Update run times of the Cell implementation compared to the Up-
date execution of the sequential C Toymodel running on x86 platforms at clock
speeds 1.6GHz and 3.2GHz. They most importantly show that our Cell proto-
type can sustain the achieved parallel efficiency for large numbers of agents,
since none of the graphs shows a negative gradient.

Figure 6.3: Parallel speedup of Cell Update code over x86 CPUs at 1.6GHz and
3.2GHz.

We can access only six of the Cell’s eight SPEs, suggesting a maximum par-
allel speedup of six, since no update computation happens on the PPE. The
gathered result series show a much larger gained speedup though (Cell vs.
1.6GHz). This is due to the fact that although we only use six processing
cores, SIMD computation on vectors of four agents allows us to ideally pro-
cess twenty-four agents at a time. Speedups of more than six can therefore be
regarded as a criterion for efficiently utilizing vector computation.

And indeed we do achieve a speedup greater than six, even when com-
pared to the 3.2GHz CPU (see Figure 6.4). It is important to keep in mind
though, that both reference architectures employ a fundamentally different
data and cache hierarchy. Thus we can only regard these results as indica-
tions into the efficiency of our vectorized Update code. However, running the
Update for a 4000 agent simulation on only one SPE yields a speedup of 1.19
in comparison to the 3.2GHz model and 3.76 when compared to the 1.6GHz
core. The general scalability of Update execution time with increasing numbers
of processors, shown in Figure fig:perf-spe-scalability, indicates the expected

47

decrease in execution time with added SPE processing units.

Agents Current Cell Original Cell
1.6GHz 3.2GHz 1.6GHz 3.2GHz

4000 17.91 5.65 5.01 1.58
8000 19.75 6.11 5.67 1.75
16000 21.05 6.53 5.70 1.77
32000 22.12 6.79 5.99 1.84
64000 22.17 6.18 6.34 1.95

Figure 6.4: Parallel speedup of Cell Update code over x86 CPUs at 1.6GHz and
3.2GHz.

Figure 6.5: Parallel speedup of Cell Update code over x86 CPUs at 1.6GHz and
3.2GHz.

6.2.2 Limitations

The greatest limitations imposed on parallel Cell-based VEW simulations stem
from the sequential overhead of linear agent-array scans, as used for Particle
Management. Amdahl’s Law implies that this imposes a limit on execution
scalability of the VEW algorithm for parallel platforms. Comparison with x86
reference CPUs suggests, however, that the overhead stems from particular
hardware restrictions imposed by the PPE cache hierarchy.

As described in section 5.3 we suggest that PM execution scales linearly.
The gradient of linear run time increase, however, changes for simulations con-
taining agent arrays with more agents than the L2 cache can hold. Thus, for
models simulating large numbers of agents PM execution grows faster than
Update computation. This results in the curved performance graph observed
in Figure 6.6. The diagram also shows the performance gain of our Cell code
over the previous Toymodel implementation as well as the sequential code
running on the fast CPU. The curve suggests, however, that this parallel effi-
ciency cannot be maintained for larger simulations.

On the other hand, due to the elementary linear nature of PM processing we
can predict, that increasing the model size through addition of new agent-stage
arrays will result in an overall linear performance scalability. The Toymodel
has an inherently uneven distribution of agents between arrays, caused by the
fact that we merge all Dead agents within a layer into one. From full scale VEW

48

Figure 6.6: Execution times of Toymodel implementations on Cell and in com-
parison to sequential C code run at 3.2GHz.

simulations we can expect a generally more even distribution of agents among
stages. Thus adding several plankton species should not limit performance
scalability of small simulations, as long as the new arrays themselves do not
grow too big for the cache.

We also have shown how to parallelize a PPE search loop in section 5.2.2.
This method demonstrates an efficient utilization of the different cache hierar-
chies of the Cell cores. The approach use the PPE caching system to executed
the agent copy operations required by the algorithm. Since linear search scans
on the PPE create the most significant performance bottleneck, we can use the
fact that the SPE-based Update loop traverses each agent during an iteration.
By creating a condensed representation of agent meta-data we can thus guide
the PPE copy operation and reduce the search space of sequential agent scans.

Completely re-structuring the Particle Management, however, can have
significant influences on the results of VEW simulations. In order to facili-
tate a parallel PM search algorithm we would require to change the global
Split/Merge rules to work on subset of agents created by the allocation of agents
to SPE units. Thus, a parallel PM strategy can only impose local boundaries on
the number of agents per processing core. An overall probabilistic approach
to Particle Management, however, is beyond the scope of this project, since the
impact on model correctness has to be evaluated thoroughly.

One problem with linear PM searches is that they only expect a limited set
of agent variables which results in irregular memory access patterns in AOS
agent layout. With the SPU-based agent update locally converting the agent
data into SOA, the possibility of a general SOA layout in memory has to be
considered as a potential future option. The current DMA strategy, however,
prevents this change. Due to the limited local buffer size, we need to use a
block-based agent distribution. Therefore, an additional memory buffering
scheme would be needed in order to accumulate agents from SOA-based agent
arrays into DMA-ready blocks. We would require additional synchronization
between PPE and SPEs in order to facilitate this buffering.

49

Conclusions

The aim of this project was to investigate the utilization of Stream Process-
ing on the Cell platform for parallel computation of VEW simulations. We
have succeeded in demonstrating that the main work load of computational
Lagrangian Ensemble models due to agent updates can efficiently be speed
up using the Cell’s SPE Vector Processing units. The Agent Update speedups
achieved over sequential implementations are maintained for simulations with
increasing numbers of agents, resulting in linear parallel scalability of Update
run time. We furthermore provide a prototype Model Compiler that is able to
create vectorized update code which uses the SPE execution kernel developed
in this project.

We also analyzed the limitations of the Cell processor imposed on VEW
models by sequential processing components. These cause a non-linear in-
crease in run time for models with very large numbers of agents. We showed
how the PPE’s L2 cache limits the performance of the Particle Management
function and causes it to dominate execution for large models. Following Am-
dahl’s Law of parallel computation this imposes an upper limit on the overall
performance gain achievable for Cell-based VEW simulations.

7.1 Parallel Scalability of VEW models

During this project we have shown that a significant parallel speedup can be
achieved for Agent Update computation. In chapter 4 we demonstrate an ex-
ecution framework for fully vectorized SIMD calculations using Stream Pro-
gramming methods. This prototype framework maintains high parallel effi-
ciency in a linear fashion when scaled to large numbers of agents. When com-
pared to a sequential C implementation run at 1.6GHz we achieved Update
speedups greater than 22 (see Figure 6.3 in chapter 6), as well as a significant
overall run time improvement for simulations with more than 100,000 agents
(see Figure 4.8). The largest model run on the final Cell prototype simulated
an initial population of 1,024,000 Diatom agents over 2 years in 5 hours.

Furthermore we identified Particle Management as the remaining bottle-
neck restricting perfectly linear scalability of execution times. Parallel speedups
obtained from Update computation are sufficient to achieve performance gains
for reasonably sized simulations. This is countered, however, by a growing
dominance of PM execution.

50

In chapter 5 we identify hardware limitations in the PPE cache hierarchy as
the reason for the dominance of sequential agent processing. The PPE caching
system limits the performance of linear agent search scans, in contrast to the
efficient use of the Cell’s bus for high-bandwidth data transfer to the SPE units.

We were not able to overcome the sequential overhead created by Particle
Management. This is due to the strong impact of the underlying algorithm on
the models accuracy. From our findings we can conjecture, however, that a Par-
ticle Management process based on parallel SPE-based searches will decrease
the sequential overhead significantly and provide a very fast and efficient so-
lution to multi-core VEW simulation. We support this claim by demonstrating
the use of a SPE-based parallel search in conjunction with agent copy executed
on the PPE in section 5.2.2. This method significantly reduce the parallel over-
head incurred from the stage-homogeneity requirement for agents established
in chapter 4.

Throughout the project we also gained valuable insights into Stream Pro-
cessing for agent-based simulations. We established that a memory structure
holding agents in multiple stage-homogeneous arrays (described in section 4.3)
is superior to a single-array approach on the Cell. This intuition is useful to
consider for further attempts at parallelizing VEW simulations on multi-core
platforms, since it originates from the natural separation of Update functions
by an agent’s biological stage.

7.2 Update Code Generator

In addition to performance gains we also demonstrate a partial Model Com-
piler that is compatible with the Stream Processing structure developed for the
Toymodel prototype. This code generator is able to create vectorized Update
arithmetic for any type of plankton agent from the standard model description
files used in the VEW. This forms a basis for future integration of performance-
oriented platform-specific model compilation for the VEW applications.

We propose separate startUpdate() and endUpdate() functions, as used
in the current Java VEW, to decouple the Update arithmetic from SPU kernel
code. This allows for consistent use of vectorized SPU Update functions. It also
allows for generic environment requests to be gathered and passed between
agents and the virtual water column without significant overhead. This is a key
property for the additional feature integration needed to simulate full VEW
models.

7.3 Future Work

Additional features, such as predatorial ingestion, still need to be added man-
ually to the code generator. Using the same approach of padded vector conver-
sion as presented in section 4.1.3, this will not compromise the parallel Update
efficiency of the Vector Processing structure of the Toymodel prototype. The
provided Model Compiler is easily extensible by using the developed proto-
type simulation as a template. This, however, requires a more efficient imple-
mentation of Particle Management.

51

7.3.1 Ingestion

One main feature of VEW simulations is the ability to model Predation, where
Zooplankton feeds on the Phytoplankton population in the virtual water col-
umn. This represents one of the most complex agent-environment loops in
the current VEW implementation. Ingestion requests have to be accumulated
per column layer and scaled according to the availability of food. This pro-
cess is very similar to nutrient uptake and release, which is already part of
the Toymodel simulation. We can therefore conjecture that the addition of this
functionality can be implemented using the same methods described in this
report.

Several other features, such as Chemical Budgeting and Recycling func-
tions also need to be added to a Cell-based Model Compiler before we can
attempt to reproduce the results of the fully working Java implementation.

7.3.2 Parallel PM

Particle Management was identified as the main performance bottleneck in this
report. Several approaches to optimizing this sequential overhead need to be
considered. Following the findings of chapter 5, we propose to use parallelized
agent search routines on the SPEs. These can be implemented similar to the
detection of Agent State Changes and will reduce the search space for PPE-
based agent management.

This, however, implies a re-structuring of the general PM algorithm as ap-
plied to Lagrangian Ensemble models. For parallel PM searches on several
nodes, the traditional min/max boundaries on agent numbers can only be ap-
plied locally. This results in a probabilistic PM algorithm which cannot define
hard boundaries on a model’s size. Thus parallel PM needs a thorough inves-
tigation that analyses the potential impact of this change.

52

Bibliography

[1] M. Scarpino. Programming the Cell Processor: For Games, Graphics, and Com-
putation. Prentice Hall, 1st Edition, 2008.

[2] A. Grama, A. Gupta, G. Karypis, V. Kumar. Introduction to Parallel Comput-
ing. Addison-Wesley, 2003.

[3] J. D. Woods. The Lagrangian Ensemble metamodel for simulating plankton
ecosystems. Progress in Oceanography 67, 2005, 84-159

[4] W. R. Hinsley. Planktonica: A system for doing biological oceanography by com-
puter. PhD Thesis, Department of Computing, Imperial College, London

[5] T. Field, W. Hinsley, W. Kleiminger, P. Meier, J. Wright, K. Bijlani. 2008
Summer UROP Project. Department of Computing, Imperial College, Lon-
don

[6] M. Sinerchia. Testing theories on fisheries recruitment. PhD Thesis, Depart-
ment of Earth Science and Engineering, Imperial College, London

[7] W. R. Hinsley, A. J. Field, J. D. Woods. Creating Individual-based Models of
the Plankton Ecosystem. International Conference on Computational Sci-
ence, 2007, Lectures in Computer Science, Vol. 4487, 111-118. Springer.

[8] D. A. Bader, A. Chandramowlishwaran, V.Agarwal. On the Design of Fast
Pseudo-Random Number Generators for the Cell Broadband Engine and an Ap-
plication to Risk Analysis. 37th International Conference on Parallel Pro-
cessing, 2008, 520 - 527.

[9] J. Lamoureux, T. Field, W. Luk. Accelerating a Virtual Ecology Model with FP-
GAs. 20th International Conference on Application-specific Systems, Ar-
chitectures and Processors, 2009.

[10] T. Chen, R. Raghavan, J. Dale, E. Iwata. Cell Broadband Engine
Architecture and its first implementation. IBM Technical Library,
http://www.ibm.com/developerworks/power/library/pa-cellperf/,
2005.

[11] J. Gummaraju, J. Coburn, Y. Turner, M. Rosenblum. Streamware: Program-
ming General-Purpose Multicore Processors Using Streams. ASPLOS, 2008.

[12] J. Gummaraju, M. Rosenblum. Stream Programming on General-Purpose Pro-
cessors. International Symposium on Microarchitecture, 2005.

[13] M. Erez, J. H. Ahn, J. Gummaraju, M. Rosenblum, W. J. Dally. Executing
Irregular Scientific Applications on Stream Architectures. ACM, 2007.

53

	Introduction
	Background
	VEW
	Lagrangian Ensemble Modeling
	Water Column and Physics
	Agents
	Particle Management
	Agent Stage Management
	Chemical Budgeting and Ingestion

	The Streaming Model of Parallel Computation
	Streaming Architecture
	Data Localization and Parallelism
	Amdahl's Law

	Cell Broadband Engine
	PPE
	SPU
	EIB

	Toymodel Analysis
	Execution Structure
	SPE
	Data Structure

	Performance
	Scalability
	SPU Timing
	SystemSim

	Evaluation

	Agent Update Optimization
	SPU Optimization
	Vector Intrinsics
	PRNG
	Vector Conversion

	Data-Transfer Framework
	Triple-Buffering
	Task and Feedback Farming
	Scheduler

	Memory Organization
	Model Compiler
	VEW Model Compilation

	Performance evaluation

	Sequential Components
	Memory: AOS vs. SOA
	Agent State Change
	Linear Search
	Indexed Agent Copy

	Particle Management
	Split and Merge
	L2 Cache

	Component Evaluation

	Discussions
	Model Correctness
	Biomass
	Agents

	Performance
	Speedup and Scalability
	Limitations

	Conclusions
	Parallel Scalability of VEW models
	Update Code Generator
	Future Work
	Ingestion
	Parallel PM

